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Numerical evaluation of the dislocation loop bias
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Abstract

We have performed numerical calculation of the capture efficiency of a dislocation loop in a finite toroidal reser-

voir, which is a more appropriate model for a dislocation loop than a spherical or cylindrical reservoir adopted in the

previous models. It allows a direct evaluation of the capture efficiency and the bias for a loop of any size with a full

account of the stress field in the loop region of influence. It is shown that the loop bias depends on the loop size,

dislocation density and the interstitial to vacancy dilatation ratio. With increasing loop size its bias decreases or

increases to the straight dislocation bias value if the dislocation density is low or high, respectively. The bias differ-

ence of loops of different sizes is shown to be the reason of a coexistence of vacancy and interstitial loops under irra-

diation. In the conventional case of the dislocation bias for interstitials, interstitial loops are expected to grow to

larger sizes than vacancy loops, while in a special case of dislocation bias for vacancies, the opposite tendency is

expected.

� 2004 Published by Elsevier B.V.

PACS: 61.72.Ji; 61.72.Qq; 61.80.Az
1. Introduction

Network dislocations and dislocation loops are usu-

ally the first observable extended defects in materials

subjected to particle irradiation, and knowledge of the

mechanisms controlling their evolution is essential for

understanding of the mechanisms of irradiation damage.

In this regard, the point defect diffusion into a straight

dislocation and a dislocation loop with account of its

stress field has been a subject of numerous investigations

[1–9]. Most of the work is based on the analysis of the

size effect, which is the principle elastic interaction be-
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tween point defects and dislocations in most metals [1–

7]. The main results of the work, in which the drift–dif-

fusion problem is treated numerically within confines of

linear elasticity theory and a point defect modeled as

an isotropic center of dilatation or contraction [4–7],

could be summarized as follows.

(1) Dislocation loops are biased sinks that attract self-

interstitial atoms (SIAs) more strongly than

vacancies.

(2) The loop absorption efficiency and bias depend

on the loop radius and number density and do

not depend on the loop character (vacancy or

interstitial).

(3) For a fixed loop number density, as the loop radius

increases its absorption efficiency and bias first

decrease, then pass through the minimum and

finally increase monotonically. The position of the
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minimum depends on the radius of the sink-free

region, which models the effect due to sink–sink

interaction.

(4) The absorption efficiency of a dislocation loop cal-

culated from a model involving a surrounding

spherical or cylindrical sink-free region of radius,

Rext, is a valid approximation only when the loop

radius is smaller than Rext/2.

In order to describe the dislocation structure evolu-

tion in the rate theory, it would be desirable to have ana-

lytical expressions for the loop absorption efficiency at

any loop size. However, elastic interaction between PD

and a dislocation loop is complicated and the resulting

diffusion problem does not have an analytical solution.

A finite-difference numerical method has been used that

allows calculating the point defect current into a loop

placed in a cylindrical [4,5] or spherical [6,7] reservoir,

at which boundary a constant concentration of point

defect is maintained.

A procedure of evaluation of the absorption effi-

ciency of a dislocation loop from the point defect cur-

rent needs some clarification. It is generally assumed

that the steady-state current into the loop is propor-

tional to the difference C � Ceq, where C is the constant

point defect concentration at the external boundary of

the sink-free region and Ceq is the equilibrium concen-

tration at the internal boundary, which corresponds to

zero PD flux in the absence of the stress field. Then it

is possible to determine a common factor, known as

the absorption (or capture) efficiency, Z so that the

point defect current per unit dislocation length, J, is

given by J ¼ ZDðC � CeqÞ, where D is the point defect

diffusivity.

As we will show in the present paper, this proportion-

ality does not take place in a general case of PD diffusion

in the dislocation stress field that changes absorption and

emission efficiency of dislocations in a different way. The

difference between the absorption and emission effi-

ciency increases with decreasing the radius of the sink-

free reservoir.

In the following section we will consider the point de-

fect current into a straight dislocation. This problem has

an exact analytical solution, which will help us to verify

the numerical results and to define the absorption and

emission efficiencies correctly.

In Section 3, we will use a finite-difference numerical

method to calculate the point defect current into a dislo-

cation loop placed in a toroidal sink-free reservoir, which

is a more appropriate model for a dislocation loop than

a spherical or cylindrical reservoir adopted in the previ-

ous models. It allows a direct evaluation of the point de-

fect current into a loop of any size with a full account of

the stress field in the loop region of influence. From this

we will calculate the loop absorption and emission effi-

ciencies and obtain analytical fitting functions describing
their dependence on the loop radius sink density and

material parameters.

In Section 4, we will calculate growth rates of dislo-

cation loops in various irradiation environments in the

effective medium approximation.
2. Bias of a straight dislocation

The change in the concentration of point defects

(PD) due to diffusion in a stress gradient is given by

oC
ot

¼ DDC þ D
kBT

rErC þ D
kBT

CDE; ð1Þ

where D is the diffusion coefficient, C is the PD concen-

tration, kB is the Boltzmann�s constant, T is the absolute

temperature, Eð~rÞ is the interaction energy of the point

defect with the stress field. In the case of constant D

and T, the introduction of dimensionless variables:

r ! r
b
; t ! t

b2
D; E ! E

kBT
;

where b is the Burgers vector, reduces Eq. (1) to the form

oC
ot

¼ DC þrðCrEÞ: ð2Þ

Eð~rÞ for an edge dislocation can be written in polar

coordinates r, h of the PD with respect to the dislocation

line:

Eðr; hÞ ¼ lbð1þ mÞX
3pkBT ð1� mÞ

sin h
r

; ð3Þ

where b is the atomic spacing, l is the shear modulus of

the matrix, m is the Poisson ratio, X is the PD relaxation

volume per atomic volume, X = Xv for vacancies and

X = Xi for interstitials.

The boundary condition at the dislocation core,

r = rc, is

C ¼ Ceq expð�Eðrc; hÞÞ at r ¼ rc; ð4Þ

where Ceq is the equilibrium concentration correspond-

ing to zero PD flux in the absence of the stress field.

At the external boundary of the dislocation radius of

influence, r = Rext, the concentration is assumed to be

equal to some average value, C

C ¼ C at r ¼ Rext: ð5Þ

In a steady-state one has from Eq. (2)

DC þrE � rC ¼ 0 ð6Þ

since E(r,h) is harmonic. The solution of Eq. (6) subject

to the conditions (4) and (5) is based on the transforma-

tion of Eq. (6) into the equation for a new function,

u(r,h):
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Fig. 1. Ratio of emission to absorption efficiency, Ze
str=Z

a
str for a

straight dislocation vs. total sink strength.
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uðr; hÞ ¼ Cðr; hÞ exp½Eðr; hÞ=2� � Ceq exp½�Eðr; hÞ=2�;
ð7Þ

Du� 1

4
uðrEÞ2 ¼ 0 ð8Þ

subject to the boundary conditions

u ¼ 0 at r ¼ rc; ð9Þ

u¼Cexp½EðRext;hÞ=2��Ceq exp½�EðRext;hÞ=2� at r¼Rext:

ð10Þ

The boundary value at the dislocation core becomes

zero while that at the external boundary now becomes

spatially varying. The assumption has been made by

many authors that the external boundary is sufficiently

far away from the dislocation core, so that the interac-

tion energy there is negligible, E(Rext) = 0. In this

approximation, one has instead of (10) a constant

boundary condition:

u ¼ C � Ceq at r ¼ Rext: ð11Þ

The solution of Eq. (8) subject to conditions (9) and

(11) is given by Margvelashvili and Saralidze [2], and it

results in the following expressions for the PD current

per the dislocation unit length, Jstr, and the capture effi-

ciency of a straight dislocation, Zstr:

J str ¼ ZstrDðC � CeqÞ; ð12Þ

Zstr ¼
2pI0ðL=2r0Þ

K0ðL=2RextÞI0ðL=2r0Þ � K0ðL=2r0ÞI0ðL=2RextÞ
;

ð13Þ

where I0(z) and K0(z) are the modified Bessel functions

of zero order and L is the characteristic range of the

interaction potential, which is proportional to the abso-

lute value of the PD relaxation volume that is usually

larger for SIAs than for vacancies:

L ¼ lbð1þ mÞ
3pkBT ð1� mÞ j X j : ð14Þ

Note, that the PD current into a dislocation, given by

Eq. (12) is proportional to C � Ceq, which is in fact the

result of the approximate boundary condition (11) rather

than a general result. Only in this approximation, it is

possible to determine a common factor, known as the

capture efficiency, Z.

As we will show below, this proportionality does not

take place in a general case of PD diffusion in the dislo-

cation stress field.

Rauch and Simon [3] have found an analytical solu-

tion of Eq. (8) subject to the exact boundary condition

(10), which yields the following expression for the PD

current into a dislocation:

J str ¼ Za
strDC � Ze

strDC
eq ¼ Za

strDðC � Ceq
Z Þ; ð15Þ
Ceq
Z ¼ Ze

str

Za
str

Ceq; ð16Þ

Za
str ¼ z0ðRextÞ þ 2

X1
n¼1

ð�1ÞnznðRextÞ; ð17Þ

Ze
str ¼ z0ðRextÞ þ 2

X1
n¼1

znðRextÞ; ð18Þ

where

znðRextÞ ¼
2pInðL=2r0ÞInðL=2RextÞ

InðL=2r0ÞKnðL=2RextÞ � InðL=2RextÞKnðL=2r0Þ
;

ð19Þ

where Im(z) and Km(z) are the modified Bessel functions

of the nth order. The factors Za
str and Ze

str can be called

absorption and emission efficiencies, respectively, and

they are not generally equal. Hence, in contrast to the

approximate solution (12), one has J str / C � Ceq
Z , and

so when C ¼ Ceq
Z , there will be no net flow into the dis-

location. It means that the dislocation stress field

changes the equilibrium PD concentration by a factor

Ze
str=Z

a
str, which depends on the radius of the dislocation

region of influence Rext determined by the total sink

strength of the system, k2tot [10]:

RextðktotÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Za
strðktotÞ
pk2tot

s
: ð20Þ

Fig. 1 shows that the approximation (12) can be jus-

tified only in the case of low sink density (6109 cm�2)

when L/2Rext is sufficiently small so that Ze
str=Z

a
str � 1,

Ceq
Z � Ceq. At higher sink densities one has Ceq

Z > Ceq,

and so it is not generally correct to follow the conven-

tional scheme and define a common �capture� efficiency

as the ratio
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Zcom ¼ J

DðC � CeqÞ
ð21Þ

since the result of such definition will depend on the PD

supersaturation, S ¼ ðC � CeqÞ=Ceq, as will be shown

below.

Substituting (15) into (21) one obtains for the com-

mon �capture� efficiency the expression, which depends

on the supersaturation:

Zcom
str ðSÞ ¼ J str

DðC � CeqÞ
¼ Za

strC � Ze
strC

eq

C � Ceq

¼ Za
strðS þ 1Þ � Ze

str

S
: ð22Þ

Such dependence is a result of incorrect definition and it

can be misleading, as it is demonstrated in Fig. 2, which

shows the straight dislocation bias dependence on the

sink density. Two different definitions are compared,

namely, the common Bcom
str and the absorption disloca-

tion bias, Ba
str, is defined as follows:

Bcom
str ¼ 1� Zcom

str;v=Z
com
str;i ; Ba

str ¼ 1� Za
str;v=Z

a
str;i; ð23Þ

where the subscripts i and v correspond to SIAs and

vacancies, respectively. Dashed curve corresponds to

approximate analytical solution (13), solid curve – to

the exact analytical solution (17) for the absorption bias,

dotted curve – to the exact solution (22) for the common

�bias�, circles and squares correspond to the absorption

and common biases obtained from the PD current calcu-

lated numerically for a dislocation placed in the cylindri-

cal reservoir (the calculation procedure is similar to that

described in Appendix A).
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Fig. 2. Dislocation bias dependence on the sink density.
Only in the case of high supersaturation, S � 1, the

common bias coincides with the exact absorption bias,

which does not depend on S and increases monoto-

nously with increasing sink density. Note that the exact

solution (17) increases less steeply than the approximate

one (13).

At low supersaturation, S = 1, the common �bias�
starts to decrease with increasing sink density above

2 · 1010 cm�2 and comes to zero at about 2 · 1011

cm�2, i.e. it behaves completely different as compared

to the absorption bias.

From the methodical point of view, the discrepancy

between the common and absorption bias shows the

importance of a correct formulation of the bias evalua-

tion scheme. To avoid confusion, we will define absorp-

tion and emission efficiencies, Za and Ze, which should be

determined from the solution of diffusion problem

separately:

Za ¼ JðCeq ¼ 0Þ
DC

; Ze ¼ JðC ¼ 0Þ
DCeq : ð24Þ

This definition will be used in the following section

dealing with evaluation of the loop bias from a numeri-

cal solution of the diffusion problem.
3. Bias of SIA and vacancy dislocation loops

The problem of three-dimensional diffusion of point

defects in a stress field of the dislocation loop does not

have an exact analytical solution, because of the defect

interaction complexity, so the numerical technique is

used. We have used the numerical solution of the

steady-state diffusion equation [6] for the calculation of

the loop bias factor.

We have considered the migration of point defects

into a dislocation loop with a radius R placed in a toroi-

dal reservoir of the larger radius, Rext, coaxial to the dis-

location loop, at which external boundary a constant

concentration C is maintained. The internal boundary

is the toroidal surface of radius rc, at which the equilib-

rium concentration is assumed:

C ¼ Ceq expð�Eðr0; hÞÞ at r ¼ rc; ð25Þ

where Ceq is the equilibrium concentration correspond-

ing to zero PD flux in the absence of the stress field.

For the definition of the dislocation core radius rc
we used the following equation

grad
EðrÞ
kBT

����
r¼rc

¼ 1

b
ð26Þ

according to [4]. The surface defined by Eq. (26) encloses

a region in which a newly arrived PD may be considered

to be absorbed. When rc is defined like that it depends

on the PD dilatation volume, temperature and loop

radius. For a straight dislocation, the definition (26)



V.I. Dubinko et al. / Journal of Nuclear Materials 336 (2005) 11–21 15
results in the following expression for the dislocation

core radius:

rcjR!1 ¼ ðbLÞ1=2: ð27Þ
The calculation scheme is described in Appendix A.

Calculations are made for zirconium at T = 573 K, the

material parameters are given in Table 1. We have calcu-

lated absorption and emission efficiencies, Za and Ze,

which are determined by Eq. (24).

The toroidal reservoir, in contrast to cylindrical or

spherical reservoir adopted in the previous models [4,6]

allows a direct evaluation of the PD current for a loop

of any size with a full account of the stress field in the

loop region of influence. In Fig. 3, numerical results of

Za calculation for spherical and toroidal reservoir are
Table 1

Material parameters of Zr used in calculations

Parameter Value

Matrix shear modulus, l, GPa 33

Poisson ratio, m 0.33

Burgers vector, b, m 3.23 · 10�10

Atomic volume of the

host lattice, x, m�3

2.36 · 10�29

Interstitial relaxation

volume, Xi [7]

1.2x; 0.3x

Vacancy relaxation

volume, Xv [7]

�0.6x

Recombination rate

constant, br, m
�2

1.72 · 1020

Vacancy formation

energy, Evf, eV

1.9

SIA formation

energy, Eif, eV

4.04

Diffusion coefficient of

interstitials, Di, m
2/s

10�7exp(�0.3 eV/kBT)

Diffusion coefficient of

vacancies, Dv, m
2/s

2 · 10�5exp(�1.104 eV/kBT)
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Fig. 3. Interstitial and vacancy absorption efficiency, Za
i (a) and Za

v

reservoir, calculated for Rext = 78b. Dashed lines represent absorption
compared in the case of Rext = 78b, which corresponds

to the dislocation density, qd � 1=pR2
ext � 5� 1010

cm�2. It can be seen that in the spherical reservoir, the

influence of external boundary starts already for

R > 0.25Rext resulting in a sharp increase of Za. In con-

trast to that, in the toroidal reservoir, Za passes through

the minimum at R � 0.5Rext and then steadily increases

to the straight dislocation value Za
str.

The absorption bias evaluated using Eq. (24) does not

depend on the loop type, in agreement with the previous

models. With increasing loop size its bias decreases or

increases to the straight dislocation bias if the disloca-

tion density is low or high, respectively (Fig. 4).

On the other hand, the sink–sink interaction breaks

the symmetry between SIA and vacancy loops in respect

to the PD emission, as shown in Fig. 5. Emission effi-

ciency of vacancies is larger for SIA loops and smaller

for vacancy loops than absorption efficiency. It can be

seen that at sufficiently small R or large Rext the absorp-

tion and emission efficiencies coincide and the difference

between them becomes significant for relatively large

loops and high sink density. This effect favors the

growth of both SIA and vacancy loops of sufficiently

large sizes ranging from tens to hundreds nanometers

depending on the sink density.

In order to use the numerical results in the rate the-

ory calculation we obtained the following analytical fit-

ting formulas for absorption and emission efficiencies as

the functions of the loop radius and type, sink density

(via Rext and Eq. (20)), PD dilatation volume and

temperature:

ZaðR;Rext;X; T Þ ¼ Za
strðRext;X; T Þ

þ 3:6 � LðX; T Þ0:255 � Za
strðRext;X; T Þ

ðR=bÞ2=3 þ 0:2
:

ð28Þ
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(b) as a function of the loop radius for toroidal and spherical

efficiencies of straight dislocation, according to Eq. (17).
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Fig. 5. Vacancy absorption and emission efficiencies as the

functions of the loop radius for (a) qd � 1011 cm�2 (Rext = 55b),

(b) qd � 2 · 1010 cm�2 (Rext = 125b), and (c) qd � 2 · 109 cm�2

(Rext = 400b).
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ZeðR;Rext;X;T Þ¼ ZaðR;Rext;X;T Þ

� 1þZe
strðRext;X;T Þ�Za

strðRext;X;T Þ
ZaðR;Rext;X;T Þ

� 1

1þ5Rext=R

� �

� 1þ�LðX;T Þþ180b2=Rext

Rþ1:5Rext

1þ tanh
10R
3Rext

�3

� �� �� �
:

ð29Þ

The absorption efficiency does not depend on the

loop or PD type and depends only on the absolute

value of the PD dilatation volume. The emission effi-

ciency depends on the loop and PD type: the sign �+�
in Eq. (29) is for Ze

Vi and Ze
SIAv, the sign ��� is for Ze

Vv

and Ze
SIAi, where subscripts �V� and �SIA� correspond

to vacancy and SIA loops, �v� and �i� correspond to

vacancies and SIA�s.
The obtained formulas are valid for any loop size

and they coincide with analytical expressions for

straight dislocations at R!1. Figs. 6 and 7 show

comparison of the fitting formulas with numerical re-

sults for the loop absorption bias and vacancy emission

efficiencies in the case dislocation bias for SIA�s (Xi/

jXvj = 2).

The obtained formulas allow us to consider an inter-

esting case of the dislocation bias for vacancy absorption,

which can be realized in those materials where SIAs

have smaller dilatation volume than vacancies: Xi/

jXvj < 1. In this case, the loop bias for vacancies,
Za
v=Z

a
i � 1 > 0, is an increasing or decreasing function

of the loop size, if the dislocation density is high or

low, respectively, as shown in Fig. 8.
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4. Growth rates of SIA and vacancy dislocation loops

Growth rates of dislocation loops are determined in

the rate theory by the difference between the net currents

of SIA�s and vacancies:
dRVL

dt
¼ 1

b
Za
vDv Cv �

Ze
Vv

Za
v

Ceq
Vv

� �
� Za

iDi Ci �
Ze
Vi

Za
i

Ceq
Vi

� �� �
;

ð30Þ

dRSIAL

dt
¼ 1

b
Za
i Di Ci �

Ze
SIAi

Za
i

Ceq
SIAi

� ��

�Za
vDv Cv �

Ze
SIAv

Za
v

Ceq
SIAv

� ��
; ð31Þ

where subscripts �V� and �SIA� correspond to vacancy

and SIA loops, �v� and �i� correspond to vacancies and

SIA�s, Ceq is the field free local equilibrium concentra-

tion of PD�s at the dislocation loop core, which can also

depend on the loop type and radius, C is the mean con-

centrations of PD�s in the bulk, which are determined by

the rate equations:

dC
dt

¼ K þ Ke � k2DC � brðDv þ DiÞCvCi; ð32Þ

where K is the generation rate of Frenkel pairs in the

bulk, Ke is the emission rate of Schottky defects from ex-

tended defects, k2 is the microstructure sink strengths,

br is the constant of the bulk recombination of PD�s.
Fig. 9 shows dislocation loop growth rates calculated

by Eqs. (30) and (31) in the case of dislocation bias for

SIA absorption, Xi/jXvj = 2 at a temperature sufficiently

low for any significant thermal vacancy emission. It is

seen that the growth rates of vacancy and interstitial

loops are always opposite in sign. At low initial disloca-

tion density, the bias of dislocation loops is larger than

the straight dislocation bias (Fig. 6) implying that

SIA-loops will grow while vacancy loops shrink (Fig.

9(a)). Formation of a microstructure made up of SIA

loops increases the total dislocation density, which
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Fig. 9. Dislocation loop growth rates at K = 10�8 dpa/s, T = 573 K in the case of dislocation bias for SIA absorption, Xi/jXvj = 2.

(a) qd = 109 cm�2, no loops; (b) qd = 109 cm�2, mean loop radius RL = 10 nm and the number density NL = 1016 cm�3.
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results in alteration of the character of the size depen-

dence of loop bias, i.e. the loop bias becomes an increas-

ing function of the loop radius (Fig. 6). Consequently,

there will be a net flow of vacancies to the smaller loops

and a net flow of SIAs to larger loops (Fig. 9(b)). The

intersection point of the loop growth rates determines

the critical loop size at which the loop growth rate is

zero. Below this size, the growth rate is positive for va-

cancy loops and above this size, it is positive for SIA

loops. For this reason, the growing vacancy loops will

accumulate at the intersection point in the size space.

Simultaneously, the SIA loop growth beyond the critical

size is enhanced so that the larger loops may grow at the

expense of the smaller ones. This is a characteristic

example of the radiation-induced coarsening (RIC) of

dislocation loops, which is similar to the RIC of voids

[10], since in both cases, the bias differential is a driving

force of the coarsening.

In the case of dislocation bias for vacancy absorption,

Xi/jXvj = 0.5, interstitial and vacancy loops change

places. Now vacancy loops will grow at a low initial dis-

location density (Fig. 10(a)). At the high loop density,

there will be a net flow of SIA�s to the smaller loops
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Fig. 10. Dislocation loop growth rates at K = 10�8 dpa/s, T = 573 K in

(a) qd = 109 cm�2, no loops; (b) qd = 109 cm�2, mean loop radius RL
and a net flow of vacancies to larger loops (Fig.

10(b)). Accordingly, the growing SIA loops will accumu-

late at the intersection point in the size space, while the

larger vacancy loops will grow due to the RIC

mechanism.
5. Discussion

According to present results, in the conventional case

of the dislocation bias for SIA absorption, Xi/jXvj > 1,

there will be a net flow of vacancies to the smaller loops

and a net flow of SIAs to larger loops, which provides a

sufficient condition for the simultaneous growth of both

vacancy and interstitial loops on the same habit plane

observed in Zr, Ti and Mg [11–13]. However, according

to this model, the vacancy loops should be smaller than

the adjacent interstitial loops, and this is not always con-

firmed by experimental data. In some cases the opposite

is true, e.g. a-type interstitial loops formed in electron

irradiated Mg were consistently smaller (about 100 nm

in diameter) than the vacancy loops (about 500 nm in

diameter) [12].
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the case of dislocation bias for vacancy absorption, Xi/jXvj = 0.5.

= 10 nm and the number density NL = 1016 cm�3.
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Wolfer and Si-Ahmed [9] proposed that non-linear

elasticity theory might produce an intrinsic bias differen-

tial between vacancy and interstitial loops. This effect

decreases rapidly with increasing loop size and so it

can hardly be applied to explain the growth of large

vacancy loops.

An alternative theory was suggested by Woo [8] who

considered point defect diffusion into an infinitesimal

edge dislocation loop including the effects of the sad-

dle-point shape anisotropy of point defects. The loop

bias was found to depend on the loop nature and the

point defect shape at the saddle point but its dependence

on the loop size (especially for large loops) remained

unclear.

The present results provide an alternative mechanism

for the vacancy loops growth to sizes exceeding the size

of SIA loops, which can be realized in those materials

where SIAs have smaller dilatation volume than vacan-

cies: Xi/jXvj < 1. In this case, there will be a net flow of

vacancies to the larger vacancy loops and a net flow of

SIAs to smaller SIA loops. This case may be of a special

interest for Zr alloys, in which SIAs are known to have

an unusually small dilatation volume and which are

rather reluctant to the void formation as compared to

other metals [13].

Another possible mechanism for the simultaneous

growth of large SIA and vacancy loops is based on a

modified emission efficiency of vacancies, such that

the vacancy emission from large V-loops is less than

that from SIA-loops. The practical significance of this

mechanism depends crucially on the ratio of the vacancy

emission rate from sinks to the Frenkel production rate

in the bulk. If the vacancy emission is due to thermal

fluctuations only then it can be significant only at

sufficiently high temperatures. If a radiation-induced

vacancy emission from dislocations is involved [14],

then it can be significant at lower temperature range

as well.

We also note that in the high sink density case, one

should take into account the effects due to internal stress

from other loops. However, such calculations are out-

side the scope of the present paper.
6. Summary

• The dislocation loop absorption and emission effi-
ciencies for PD have been calculated numerically as

functions of the loop size and type, the total sink

strength, temperature and the PD dilatation volume.

• The loop bias for SIA or vacancy absorption depends

on the loop size, dislocation density, PD dilatation

ratio, Xi/jXvj, and does not depend on the loop type.

With increasing loop size its bias decreases or

increases to the straight dislocation bias value if the

dislocation density is low or high, respectively.
• A coexistence of vacancy and interstitial loops is pos-

sible due to a bias difference of loops of different

sizes. In the conventional case of the dislocation bias

for SIA�s, Xi/jXvj > 1, SIA loops are expected to grow

to larger sizes than vacancy loops, while in a special

case of dislocation bias for vacancies, Xi/jXvj < 1,

the opposite tendency is expected.

• Emission efficiency of vacancies is larger for SIA

loops and smaller for vacancy loops, and the differ-

ence between them increases with increasing sink

density. This effect favors the growth of both SIA

and vacancy loops of sufficiently large sizes ranging

from tens to hundreds nanometers depending on

the sink density. The practical significance of this

effect depends on the ratio of the vacancy emission

rate from sinks to the Frenkel pair production rate

in the bulk.

• In order to use the numerical results in the rate

theory calculation, analytical fitting formulas for

absorption and emission efficiencies have been

obtained as the functions of the loop radius and type,

sink density, PD dilatation volume and temperature.
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Appendix A. Numerical calculation scheme

We have considered the migration of point defects

into a dislocation loop with a radius R placed in a reser-

voir, at which boundary a constant concentration C is

maintained. Two cases have been considered: (i) a spher-

ical reservoir of a radius Rext (Fig. 11), and (ii) a toroidal

reservoir coaxial to the dislocation loop (Fig. 12). The

internal boundary in both cases is the toroidal surface,

at which the equilibrium concentration is assumed. Let

us introduce the cylindrical coordinate system, where

z-axis is orthogonal to the dislocation loop plane. Note

that the diffusion field has rotational symmetry about

the z-axis. Taking into account the reflection symme-

tries, the corresponding boundary value problem can

be formulated with reference to Figs. 11 and 12.

For the spherical reservoir (Fig. 11) and toroidal res-

ervoir at R < Rext (Fig. 12(b)), the diffusion–drift equa-

tion is given by Eq. (2) in the region bounded by the

surfaces 0A, AB, BC, CD, D0. For the toroidal reservoir

at R > Rext (Fig. 12(a)), the diffusion–drift equation is

given by Eq. (2) in the region bounded by the surfaces

DA, AB, BC, CD. The boundary conditions are given
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Fig. 11. Disposition of the co-ordinate system used for the

spherical reservoir.
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by Eq. (4) at the dislocation core, and by Eq. (5) at the

external boundary, at the 0A and BC

oC
oz

¼ 0 ðA:1Þ

and at the r = 0

oC
or

¼ 0: ðA:2Þ

To circumvent a strong angular dependence of the

concentration at the dislocation core (the boundary con-

dition (4)) we introduce the following transformation

[15], which differs slightly from Eq. (7), which was used

for the analytical calculations:

wðr; zÞ ¼ Cðr; zÞ exp½Eðr; zÞ�: ðA:3Þ

In terms of w, the diffusion equation takes the form

ow
ot

¼ o2w
or2

þ o2w
oz2

þ 1

r
� oE

or

� �
ow
or

� oE
oz

ow
oz

: ðA:4Þ

The boundary conditions are

wðr; zÞ ¼ wextðr; zÞ ¼ C exp½EðRextÞ� at r ¼ Rext; ðA:5Þ

wðr; zÞ ¼ w0 at r ¼ rc; ðA:6Þ

ow
oz

¼ 0; at the 0A and BC; ðA:7Þ
CD A B
rc
R0

Rext
C=Ceq

C=C
_

S

(a)

Fig. 12. Disposition of the co-ordinate system used fo
ow
or

¼ 0; at the 0D: ðA:8Þ

For a dislocation loop, the drift field E has been cal-

culated by Bastecka and Kroupa [16]. In dimensionless

variables it is given by

Eðr; zÞ ¼ � lbð1þ mÞX
3pkBT ð1� mÞ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr þ RÞ2 þ z2

q

� R2 � r2 � z2

ðR� rÞ2 þ z2
EeðkÞ þ KeðkÞ

( )
; ðA:9Þ

where Ee(k) and Ke(k) are the complete elliptic integrals

of the first and second kind, respectively. The argument

k is defined by

k ¼ 4rR

ðr þ RÞ2 þ z2
: ðA:10Þ

The absorption and emission efficiencies of the dis-

location loop, according to Eq. (24), are defined as

Za
a;S ¼

1

2pRC
Ia;S jCeq¼0 ¼

1

2pRC

Z
L
e�Earwa dS; ðA:11Þ

Ze
a;S ¼

1

2pRCeq Ia;S jC¼0 ¼
1

2pRCeq

Z
L
e�Earwa dS; ðA:12Þ

where Ia,S is the point-defect flux into the loop and S

is any closed surface surrounding the loop, a = i, v.

We need a steady-state solution of Eq. (A.4), so we

have considered a reduced form of Eq. (A.4) without

the time derivative:

o2W
or2

þ o2W
oz2

þ 1

r
� oE

or

� �
oW
or

� oE
oz

oW
oz

¼ 0: ðA:13Þ

The boundary value problem Eq. (A.13) and Eqs.

(A.5)–(A.8) was solved numerically by a finite-difference

method [6].

It can be shown [7] that the use of the approximate

boundary condition

Wðr; zÞ ¼ Wextðr; zÞ ¼ C at r ¼ Rext; ðA:14Þ

which corresponds to zero stress field at the external

boundary in Eq. (A.5), would result in equal absorption

and emission efficiencies, similar to the straight dislocation
r       

D

z

r CA BR0
rc

Rext
C=Ceq

C=C
_

S

(b)

r toroidal reservoir: (a) R > Rext, (b) R < R ext.
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case. In this case, the emission efficiency does not depend

on the loop type, in agreement with previous results [7].

When the exact boundary condition (Eq. (A.5)) is

used, emission efficiency is different from the absorption

efficiency and depends on the loop type (Fig. 5).
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